Shapes of Molecules - Mark Scheme

Q1.

Question number	Answer	Additional guidance	Mark
(a)	An explanation that makes reference to the following points: (I) is incorrect because the solutions are aqueous or ions are (in the) aqueous (state) the state symbols should be (aq) instead of (I)	Allow silver nitrate and sodium chloride are aqueous Do not award if incorrect state symbol for one of the species in the equation e.g. Ag is (s) / AgCl is (aq)	(2)
	silver ions should have one positive charge / Ag+ or silver chloride is AgCl	Ignore just the charge on the silver ion is incorrect / the formula of silver chloride is incorrect	

Question number	Answer	Additional guidance	Mark
	calculation of mol of C, H and Cl (1) calculation of empirical formula (1) calculation of molecular formula (1)	Example of calculation: C: H: CI mol $\frac{3.09}{12}$: $\frac{0.26}{1}$: $\frac{9.15}{35.5}$ = 0.2575: 0.26: 0.2577 (ratio 1: 1: 1) Empirical formula is CHCI molar mass CHCI = 12 + 1 + 35.5 = 48.5 $\frac{\text{molar mass (CHCI)}_n}{\text{molar mass CHCI}} = \frac{97}{48.5} = 2$ molar mass CHCI = 48.5 Molecular formula is $C_2H_2CI_2$ Allow symbols in any order Do not award 2CHCI Ignore SF in mol and ratio Correct molecular formula with some working scores (3) Alternative method scores (3)	Mark (3)
		no. C atoms = $\frac{3.09 \times 97}{12.5 \times 12} = 2 / 1.9982$ no. H atoms = $\frac{0.26 \times 97}{12.5 \times 1} = 2(.0176)$ no. Cl atoms = $\frac{9.15 \times 97}{12.5 \times 97} = 2$	
		12.5 x 35.5	

Question number	Answer	Additional guidance	Mark
(c)(i)	all 4 ion formulae all 4 (corresponding) m / z values	Example of answer: ions m/z N(35Cl) ₃ + 119 N(35Cl) ₂ ³⁷ Cl+ 121 N ³⁵ Cl(³⁷ Cl) ₂ + 123 N(³⁷ Cl) ₃ + 125 Allow any other unambiguous way of representing the formulae e.g. in words Allow (1) for any two m / z values with corresponding ion formulae Ignore missing / incorrect charge on ion Ignore bonds or + between Cl atoms / order of atoms e.g. N- ³⁵ Cl- ³⁵ Cl- ³⁵ Cl	(2)

Question number	Answer	Additional guidan	ice	Mark
(c)(ii)	number of bonding pairs	Example of table:		(3)
	and number of lone pairs	Number of bonding pairs of electrons on nitrogen	3	
	shape	Number of lone pairs on electrons on nitrogen	1	
	bond angle	Shape of molecule	trigonal pyramid al	
		Bond angle	107°	
		Shape: Allow 3-dimensiona	al drawing e.g.	
		There must be at le dotted/dashed line for 3-d Allow just 'pyramid Allow pyramid for p Do not award tetra	or wedge al' yramidal	
		Bond angle: Allow any number i range 106-108° Ign missing °		

Question number	Answer	Additional guidance	Mark
(d)(i)	An explanation that makes reference to one of the following pairs of points:	Marks must come from the same route – maximum 1 mark if one point from one route and	(2)
	Polarisation route	one point from the other	
	 an aluminium ion / cation is (very) small and highly charged 	route	
	or	Allow the aluminium	
	Al ³⁺ has a small ionic radius / is small	ion has a high charge density	
	so it polarises / distorts the chloride ion / Cl ⁻ / anion		
	Allow Electronegativity route	Allow a description of	
	there is a (relatively) small difference in	polarisation Allow	
	electronegativity between aluminium and chlorine	chlorine anion / ion	
		Ignore the	
	100 00 00	aluminium chloride	
	so the electrons are (partially) shared	is polarised	
		Ignore size of chloride ion	

Question number	Answer	Additional guidance	Mark
(d)(ii)	A description including the following points:	Example of diagram:	(2)
	diagram showing two AlCl ₃ molecules joined through two chlorine atoms	Allow dot-and-cross diagram Ignore missing arrow heads and lone pairs from diagram Do not award diagram	
	dative (covalent) bonds or coordinate bonds	with Al-Al / Cl-Cl bond(s) Allow dative covalent bonds labelled on diagram / shown as arrows from Cl to Al	
		Allow description of dative bonds Allow M2 even if only 1 dative bond shown / mentioned	
		Do not award M2 if dative bonds starting from aluminium	
		Do not award M2 for any answer that mentions ions / ionic bonds	St.

Question number	Answer	Additional guidance	Mark
(a)(i)	• (reagent W) hydrogen/H ₂ (1)		2
	(catalyst X) nickel (1)	Allow nickel, Ni/platinum, Pt/palladium, Pd	

Question number	Answer	Additional guidance	Mark
(a)(ii)		Allow OH	1
	H H H H—C—C—C—H H O O H H H	Do not allow C-H-O	

Question number	Answer	Additional guidance	Mark
(a)(iii)	•		1
	ō		

Question number	Answer		Additional guidance	Mark
(b)(i)	 correct dipole (O^{δ-} - H^{δ+}) curly arrow from C=C to H in H₂O curly arrow from O-H bond to O curly arrow from lone pair on O of OH⁻ to C⁺ 	(1) (1) (1) (1)	Example of mechanism: H C=C H Stage 1 H C-C H H H H	4

Question number	Answer		Additional guidance	Mark
(b)(ii)	trigonal planar	(1)	Allow M1 and M2 shown on a diagram	3
	3 bond pairs/electron pairs (around to carbon atom)	he (1)	Allow bond pairs/electron pairs as far apart as possible	
	bond pairs/electron pairs arranged to minimise repulsion	(1)		

Question number	Answer		Additional guidance	Mark
	4 carbon backbone with continuation bonds all side chains correct	(1)	Example of polymer:	Mark 2
			CH ₃ H H CH ₃ Allow CO ₂ CH ₃ in side chains Allow CH ₃ and COOCH ₃ groups above or below the carbon chain Ignore square brackets and n Any structure with C=C scores 0	

Q3.

Question number	Answer	Mark
	The only correct answer is C (ICl ₄)	(1)
	A is incorrect because CCl4 is tetrahedral	
	B is incorrect because CH ₄ is tetrahedral	
	D is incorrect because NH ₄ ⁺ is tetrahedral	

Q4.

Question number	Answer	Mark
	D AlCl ₃ trigonal planar, PH ₃ pyramidal	1