Shapes of Molecules - Mark Scheme ## Q1. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | (a) | An explanation that makes reference to the following points: (I) is incorrect because the solutions are aqueous or ions are (in the) aqueous (state) the state symbols should be (aq) instead of (I) | Allow silver nitrate and sodium chloride are aqueous Do not award if incorrect state symbol for one of the species in the equation e.g. Ag is (s) / AgCl is (aq) | (2) | | | silver ions should have one positive charge / Ag+ or silver chloride is AgCl | Ignore just the charge on
the silver ion is incorrect /
the formula of silver chloride
is incorrect | | | Question number | Answer | Additional guidance | Mark | |-----------------|---|--|-------------| | | calculation of mol of C, H and Cl (1) calculation of empirical formula (1) calculation of molecular formula (1) | Example of calculation: C: H: CI mol $\frac{3.09}{12}$: $\frac{0.26}{1}$: $\frac{9.15}{35.5}$ = 0.2575: 0.26: 0.2577 (ratio 1: 1: 1) Empirical formula is CHCI molar mass CHCI = 12 + 1 + 35.5 = 48.5 $\frac{\text{molar mass (CHCI)}_n}{\text{molar mass CHCI}} = \frac{97}{48.5} = 2$ molar mass CHCI = 48.5 Molecular formula is $C_2H_2CI_2$ Allow symbols in any order Do not award 2CHCI Ignore SF in mol and ratio Correct molecular formula with some working scores (3) Alternative method scores (3) | Mark
(3) | | | | no. C atoms = $\frac{3.09 \times 97}{12.5 \times 12} = 2 / 1.9982$
no. H atoms = $\frac{0.26 \times 97}{12.5 \times 1} = 2(.0176)$
no. Cl atoms = $\frac{9.15 \times 97}{12.5 \times 97} = 2$ | | | | | 12.5 x 35.5 | | | Question number | Answer | Additional guidance | Mark | |-----------------|---|--|------| | (c)(i) | all 4 ion formulae all 4 (corresponding) m / z values | Example of answer: ions m/z N(35Cl) ₃ + 119 N(35Cl) ₂ ³⁷ Cl+ 121 N ³⁵ Cl(³⁷ Cl) ₂ + 123 N(³⁷ Cl) ₃ + 125 Allow any other unambiguous way of representing the formulae e.g. in words Allow (1) for any two m / z values with corresponding ion formulae Ignore missing / incorrect charge on ion Ignore bonds or + between Cl atoms / order of atoms e.g. N- ³⁵ Cl- ³⁵ Cl- ³⁵ Cl | (2) | | Question number | Answer | Additional guidan | ice | Mark | |-----------------|--------------------------|--|-----------------------------|------| | (c)(ii) | number of bonding pairs | Example of table: | | (3) | | | and number of lone pairs | Number of
bonding pairs
of electrons on
nitrogen | 3 | | | | shape | Number of lone
pairs on
electrons on
nitrogen | 1 | | | | bond angle | Shape of molecule | trigonal
pyramid
al | | | | | Bond angle | 107° | | | | | Shape:
Allow 3-dimensiona | al drawing e.g. | | | | | There must be at le
dotted/dashed line
for 3-d
Allow just 'pyramid
Allow pyramid for p
Do not award tetra | or wedge
al'
yramidal | | | | | Bond angle:
Allow any number i
range 106-108° Ign
missing ° | | | | | | | | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|------| | (d)(i) | An explanation that makes reference to one of the following pairs of points: | Marks must come from the same route – maximum 1 mark if one point from one route and | (2) | | | Polarisation route | one point from the other | | | | an aluminium ion / cation is (very) small and highly charged | route | | | | or | Allow the aluminium | | | | Al ³⁺ has a small ionic radius / is small | ion has a high charge density | | | | so it polarises / distorts the chloride ion / Cl ⁻ / anion | | | | | Allow Electronegativity route | Allow a description of | | | | there is a (relatively) small difference in | polarisation Allow | | | | electronegativity between aluminium and
chlorine | chlorine anion / ion | | | | | Ignore the | | | | 100 00 00 | aluminium chloride | | | | so the electrons are (partially) shared | is polarised | | | | | Ignore size of chloride ion | | | | | | | | | | | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|------| | (d)(ii) | A description including the following points: | Example of diagram: | (2) | | | diagram showing two AlCl ₃ molecules joined
through two chlorine atoms | Allow dot-and-cross diagram Ignore missing arrow heads and lone pairs from diagram Do not award diagram | | | | dative (covalent) bonds or coordinate bonds | with Al-Al / Cl-Cl bond(s) Allow dative covalent bonds labelled on diagram / shown as arrows from Cl to Al | | | | | Allow description of dative
bonds Allow M2 even if only 1
dative bond shown /
mentioned | | | | | Do not award M2 if
dative bonds
starting from
aluminium | | | | | Do not award M2 for any
answer that mentions
ions / ionic bonds | St. | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | (a)(i) | • (reagent W) hydrogen/H ₂ (1) | | 2 | | | (catalyst X) nickel (1) | Allow nickel, Ni/platinum,
Pt/palladium, Pd | | | Question number | Answer | Additional guidance | Mark | |-----------------|--------------------------------------|---------------------|------| | (a)(ii) | | Allow OH | 1 | | | H H H
H—C—C—C—H
H O O
H H H | Do not allow C-H-O | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--------|---------------------|------| | (a)(iii) | • | | 1 | | | ō | | | | Question
number | Answer | | Additional guidance | Mark | |--------------------|---|--------------------------|--|------| | (b)(i) | correct dipole (O^{δ-} - H^{δ+}) curly arrow from C=C to H in H₂O curly arrow from O-H bond to O curly arrow from lone pair on O of OH⁻ to C⁺ | (1)
(1)
(1)
(1) | Example of mechanism: H C=C H Stage 1 H C-C H H H H | 4 | | Question number | Answer | | Additional guidance | Mark | |-----------------|---|--------|--|------| | (b)(ii) | trigonal planar | (1) | Allow M1 and M2 shown on a diagram | 3 | | | 3 bond pairs/electron pairs (around to
carbon atom) | he (1) | Allow bond pairs/electron pairs as far apart as possible | | | | bond pairs/electron pairs arranged to
minimise repulsion | (1) | | | | Question
number | Answer | | Additional guidance | Mark | |--------------------|---|-----|--|-----------| | | 4 carbon backbone with continuation bonds all side chains correct | (1) | Example of polymer: | Mark
2 | | | | | CH ₃ H H CH ₃ Allow CO ₂ CH ₃ in side chains Allow CH ₃ and COOCH ₃ groups above or below the carbon chain Ignore square brackets and n Any structure with C=C scores 0 | | Q3. | Question number | Answer | Mark | |-----------------|--|------| | | The only correct answer is C (ICl ₄) | (1) | | | A is incorrect because CCl4 is tetrahedral | | | | B is incorrect because CH ₄ is tetrahedral | | | | D is incorrect because NH ₄ ⁺ is tetrahedral | | Q4. | Question
number | Answer | Mark | |--------------------|--|------| | | D AlCl ₃ trigonal planar, PH ₃ pyramidal | 1 |